Statistical Inference of Minimum Rank Factor Analysis
نویسنده
چکیده
For any given number of factors, Minimum Rank Factor Analysis yields optimal communalities for an observed covariance matrix in the sense that the unexplained common variance with that number of factors is minimized, subject to the constraint that both the diagonal matrix of unique variances and the observed covariance matrix minus that diagonal matrix are positive semidefinite. As a result, it becomes possible to distinguish the explained common variance from the total common variance. The percentage of explained common variance is similar in meaning to the percentage of explained observed variance in Principal Component Analyis, but typically the former is much closer to 100 than the latter. So far, no statistical theory of MRFA has been developed. The present paper is a first start. It yields closed-form expressions for the asymptotic bias of the explained common variance, or, more precisely, of the unexplained common variance, under the assumption of multivariate normality. Also, the asymptotic variance of this bias is derived, and also the asymptotic covariance matrix of the unique variances that define a MRFA solution. The presented asymptotic statistical inference is based on a recently developed perturbation theory of semidefinite programming. A numerical example is also offered to demonstrate the accuracy of the expressions.
منابع مشابه
Inspection of temperature alteration and it’s prediction possibility in Ardebil province using statistical analysis and adaptive neuro -fuzzy inference system
Temperature alteration plays special role as one of the most basic climate elements. So inspection of temperature alteration and anticipation has scientific- applied magnitude. In this study inspection of several cases of statistical characteristics of monthly average, maximum and minimum temperature and illumination of their alteration method, temperatures predictability by ANFIS is evalua...
متن کاملLow-rank graphical models and Bayesian inference in the statistical analysis of noisy neural data
Low-rank graphical models and Bayesian inference in the statistical analysis of noisy neural data
متن کاملStatistical Inference of Semidefinite Programming
In this paper we consider covariance structural models with which we associate semidefinite programming problems. We discuss statistical properties of estimates of the respective optimal value and optimal solutions when the ‘true’ covariance matrix is estimated by its sample counterpart. The analysis is based on perturbation theory of semidefinite programming. As an example we discuss asymptoti...
متن کاملImplementation of Traditional (S-R)-Based PM Method with Bayesian Inference
In order to perform Preventive Maintenance (PM), two approaches have evolved in the literature. The traditional approach is based on the use of statistical and reliability analysis of equipment failure. Under statistical-reliability (S-R)-based PM, the objective of achieving the minimum total cost is pursued by establishing fixed PM intervals, which are statistically optimal, at which to replac...
متن کاملIdentication robust inference in structural multivariate factor models with rank restrictions
We propose identi cation robust inference methods for structural multivariate factor models with rank restrictions. Such models involve nonlinear reduced rank restrictions whose identi cation may raise serious non-regularities leading to the failure of standard asymptotics. First, we prove several invariance and nuisance-parameter reduction results for commonly used eigenvalue and minimum root ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1999